Question	Scheme	Marks	AOs
1	$\int \frac{3x^4 - 4}{2x^3} \mathrm{d}x = \int \frac{3}{2}x - 2x^{-3} \mathrm{d}x$	M1 A1	1.1b 1.1b
	$=\frac{3}{2} \times \frac{x^{2}}{2} - 2 \times \frac{x^{-2}}{-2} (+c)$	dM1	3.1a
	$=\frac{3}{4}x^{2}+\frac{1}{x^{2}}+c$ o.e	A1	1.1b
		(4)	
		(4 n	narks)
$\int \frac{3x^4}{2x^3}$ A1: $\int \frac{3}{2}x^4$	but to divide to form a sum of terms. Implied by two terms with one corres $-\frac{4}{2x^3} dx$ scores this mark. $2x^{-3} dx$ o.e such as $\frac{1}{2} \int (3x - 4x^{-3}) dx$. The indices must have been pro- Condone spurious notation or lack of the integral sign for this mark.		both
	the full strategy to integrate the expression. It requires two terms with one $ax^{p} + bx^{q}$ where $p = 2$ or $q = -2$	correct in	dex.
A1: Correc	t answer $\frac{3}{4}x^2 + \frac{1}{x^2} + c$ o.e. such as $\frac{3}{4}x^2 + x^{-2} + c$		

Question	Scheme	Marks	AOs
2	$x^n \rightarrow x^{n+1}$	M1	1.1b
	$\int \left(8x^3 - \frac{3}{2\sqrt{x}} + 5 \right) dx = \frac{8x^4}{4} \dots + 5x$	A1	1.1b
	$= \dots - 2 \times \frac{3}{2} x^{\frac{1}{2}} + \dots$	A1	1.1b
	$=2x^4-3x^{\frac{1}{2}}+5x+c$	A1	1.1b
		(4)	
		(4	marks)
M1: F	Notes For raising any correct power of x by 1 including $5 \rightarrow 5x$ (not for $+c$) Al		
A1: F c A1: F	$x^3 \rightarrow x^{3+1}$ For 2 correct non-fractional power terms (allow unsimplified coefficients) and may appear on separate lines. The indices must be processed. The + <i>c</i> does not count as a correct term here. Condone the 1 appearing as a power or denominator such as $\frac{5x^1}{1}$ for this mark. For the correct fractional power term (allow unsimplified) Allow eg $+-2 \times 1.5\sqrt{x^1}$. Also allow fractions within fractions for this mark such as $\frac{3}{2}x^{\frac{1}{2}}$		
A1: A I A n F	All correct and simplified and on one line including $+c$. Allow $-3\sqrt{x}$ or Do not accept $+-3x^{\frac{1}{2}}$ for this mark. Award once a correct expression is seen and isw but if there is any addition notation and no correct expression has been seen on its own, withhold the Eg. $\int 2x^4 - 3x^{\frac{1}{2}} + 5x + c dx$ or $2x^4 - 3x^{\frac{1}{2}} + 5x + c = 0$ with no correct expression arlier are both A0.	onal/incor final mai	rect 'k.

	ion Scheme	Marks	AOs
3(a)	$h = 2.3 - 1.7 e^0$	M1	3.4
	Either 0.6 {m} or 60 cm	A1	1.1b
		(2)	
(b	$\left\{\frac{\mathrm{d}h}{\mathrm{d}t}=\right\}0.34\mathrm{e}^{-0.2t}$		3.1b
	At $t = 4 \Rightarrow$ Rate of growth is $0.34e^{-0.2 \times 4} = 0.15277\{m / year\}$	dM1	3.4
	0.153 {m per year} = 15.3 cm {per year} *	A1*	1.1b
		(3)	
(c)	2.3 (m)	B1	2.2a
		(1)	
		(6 n	narks)
Notes	:		
A1:	Fully correct. Requires • sight of $\left\{\frac{dh}{dt}=\right\} 0.34e^{-0.2t}$ o.e., e.g., $\left\{\frac{dh}{dt}=\right\} \frac{17}{50}e^{-0.2t}$ or $\left\{\frac{dh}{dt}=\right\} - 0.2 \times -1.7e^{-0.2t}$		
(b) M1: dM1: A1*:	The M mark may be implied by A1. Links rate of change to gradient and differentiates $h = 2.3 - 1.7e^{-0.2t}$ to $ke^{-0.2t}$ Accept, e.g., $-0.2 \times -1.7e^{-0.2t}$ Must be seen in (b). Substitutes $t = 4$ into $ke^{-0.2t}$, $k \neq -1.7$ and calculates its value. Fully correct. Requires • sight of $\left\{\frac{dh}{dt} = \right\} 0.34e^{-0.2t}$ o.e., e.g., $\left\{\frac{dh}{dt} = \right\} \frac{17}{50}e^{-0.2t}$ or $\left\{\frac{dh}{dt} = \right\}$		
M1: dM1:	The M mark may be implied by A1. Links rate of change to gradient and differentiates $h = 2.3 - 1.7e^{-0.2t}$ to $ke^{-0.2t}$ Accept, e.g., $-0.2 \times -1.7e^{-0.2t}$ Must be seen in (b). Substitutes $t = 4$ into $ke^{-0.2t}$, $k \neq -1.7$ and calculates its value. Fully correct. Requires • sight of $\left\{\frac{dh}{dt} = \right\} 0.34e^{-0.2t}$ o.e., e.g., $\left\{\frac{dh}{dt} = \right\} \frac{17}{50}e^{-0.2t}$ or $\left\{\frac{dh}{dt} = \right\}$ • $\left\{\frac{dh}{dt} = \right\}$ awrt 0.153 {metres per year} • changing to awrt 15.3 cm {per year}.	-0.2×-1.7	

		1	
estion	Scheme	Marks	AOs
4	Sets $f'(4) = 0 \Longrightarrow 16 + 2a + b = 0$	M1	2.1
	Integrates $f'(x) = 4x + a\sqrt{x} + b \Rightarrow \{f(x) = \}2x^2 + \frac{2}{3}ax^{\frac{3}{2}} + bx \{+c\}$	M1 A1ft	1.1b 1.1b
	Deduces that $c = -5$	B1	2.2a
	Full and complete method using the given information f'(4) = 0 and $f(4) = 3in order to find values for a and bNote: a = -15 and b = 14$	ddM1	3.1a
	${f(x) = }2x^2 - 10x^{\frac{3}{2}} + 14x - 5$	Al	1.1b

Notes:

B1:

- For the key step in setting $f'(4) = 0 \Longrightarrow 16 + 2a + b = 0$ to set up an equation in a and b. M1: Condone slips.
- For attempting to integrate f'(x). Award for $x^n \to x^{n+1}$ or $b \to bx$ M1: This may come after finding values for *a* or *b* or both.

A1ft:
$$\{f(x) = \}2x^2 + \frac{2}{3}ax^{\frac{3}{2}} + bx \ \{+c\} \text{ or, e.g., } \{f(x) = \}2x^2 + \frac{2}{3}ax^{\frac{3}{2}} + (-16 - 2a)x \ \{+c\}$$

Allow ft on their b in terms of a if they substituted in from their $f'(4) = 0 \Rightarrow 16 + 2a + b = 0$ Do not ft if they have a value(s) for *a* or *b* This may be left unsimplified but the indices must be processed. is wonce the mark is awarded. Condone the omission of the + cThis accuracy mark requires only the previous M mark to be scored. Deduces that the constant term in f(x) is -5. Note that deducing b = -5 is B0. It must be the constant in a changed function. **ddM1:** For a complete strategy to find values for both *a* and *b*.

Do not be concerned about the logistics of how they solve the simultaneous equations - this may be done on a calculator.

Note: a = -15 and b = 14

This is dependent on **both** previous method marks and so must include use of both

f'(4) = 0 (their 16 + 2a + b = 0 o.e.)

•
$$f(4) = 3$$
 (their $32 + \frac{16}{3}a + 4b - 5 = 3$ o.e.)

 ${f(x) =} 2x^2 - 10x^{\frac{1}{2}} + 14x - 5$ or exact simplified equivalent, e.g., use of $x\sqrt{x}$ in place of $x^{\frac{1}{2}}$ A1: Apply isw once a correct expression is seen.

(6)

(6 marks)

Questio	n Scheme	Marks	AOs
5	$x^{\frac{1}{2}}(2x-5) = \dots x^{\frac{3}{2}} + \dots x^{\frac{1}{2}} \text{ or } \frac{x^{\frac{1}{2}}(2x-5)}{3} = \frac{\dots x^{\frac{3}{2}} + \dots x^{\frac{1}{2}}}{3}$	M1	1.1b
	$\frac{2x^{\frac{3}{2}}}{3} - \frac{5x^{\frac{1}{2}}}{3}$	A1	1.1b
	$\int \frac{2x^{\frac{3}{2}}}{3} - \frac{5x^{\frac{1}{2}}}{3} dx = \dots x^{\frac{5}{2}} \pm \dots x^{\frac{3}{2}} (+c)$	dM1	1.1b
	$\frac{4}{15}x^{\frac{5}{2}} - \frac{10}{9}x^{\frac{3}{2}} + c$	A1	1.1b
		(4)	
	NT /		(4 marks)
M1:	Notes Attempts to multiply out the brackets of the numerator and either writes the o	•	- (o n in - + +1
A1:	numerator) as a sum of terms with indices . Award for either one correct index of $x^{\frac{3}{2}} +x^{\frac{1}{2}}$ which comes from a correct method. Condone appearing as terms on separate lines for this mark. The correct index may be implied later when e.g. $\sqrt{x} \rightarrow x^{\frac{3}{2}}$ or $(\sqrt{x})^3 \rightarrow x^{\frac{5}{2}}$ after they have integrated. The $\frac{1}{3}$ does not need to be considered for this mark. $\frac{2x^{\frac{3}{2}}}{3} - \frac{5x^{\frac{1}{2}}}{3}$ or equivalent e.g. $\frac{1}{3}\left(2x^{\frac{3}{2}} - 5x^{\frac{1}{2}}\right)$. Condone $\frac{2x^{\frac{3}{2}} - 5x^{\frac{1}{2}}}{3}$ May be implied by further work. The correct index may be implied later when e.g. $\sqrt{x} \rightarrow x^{\frac{3}{2}}$ or $(\sqrt{x})^3 \rightarrow x^{\frac{5}{2}}$ after they have integrated. The correct index may be implied later when e.g. $\sqrt{x} \rightarrow x^{\frac{3}{2}}$ or $(\sqrt{x})^3 \rightarrow x^{\frac{5}{2}}$ after they have integrated. Ignore incorrect integration notation around the terms. Ignore any presence or absence of dx. Be aware that a factor of $\frac{1}{2}$ may be taken outside of the integral so you may need to look at		
dM1:	Further work to award the first A mark if work on the two terms is done separately or in a list. May be unsimplified and the two terms may appear in a list which is fine. Coefficients must be exact. Increases the power by one on an x^n term where <i>n</i> is a fraction. The index does not need to be processed. E.g. $x^{\frac{3}{2}+1}$ or $x^{\frac{1}{2}+1}$ It is dependent on the previous method mark so at least one of the terms must have had a correct index. Note that integrating the numerator and denominator e.g. $\frac{2x^{\frac{3}{2}}}{3} - \frac{5x^{\frac{1}{2}}}{3} \rightarrow \frac{x^{\frac{5}{2}}}{3x} - \frac{x^{\frac{3}{2}}}{3x}$ is dM0.		

 $\frac{4}{15}x^{\frac{5}{2}} - \frac{10}{9}x^{\frac{3}{2}} + c$ and including the constant or simplified exact equivalent such as A1: $\frac{4}{15}\sqrt{x^5} - \frac{10}{9}\sqrt{x^3} + c \text{ or } \frac{4}{15}x^{2.5} - \frac{10}{9}x^{1.5} + c \text{ or } \frac{1}{45}\left(12x^{\frac{5}{2}} - 50x^{\frac{3}{2}}\right) + c \text{ or } \frac{x^{\frac{7}{2}}}{45}(12x - 50) + c.$ Fractions must be in their lowest terms and indices processed. Do not accept e.g. $0.267x^{\frac{5}{2}} - 1.11x^{\frac{3}{2}} + c$ but allow $0.26x^{\frac{5}{2}} - 1.1x^{\frac{3}{2}} + c$ Isw once a correct answer is seen but withhold this mark if there is spurious notation around their final answer e.g. $\int \frac{4}{15} x^{\frac{5}{2}} - \frac{10}{9} x^{\frac{3}{2}} + c \, dx$ is M1A1dM1A0 Alternative method using integration by parts example e.g. $\int x^{\frac{1}{2}} (2x-5) dx = \dots x^{\frac{3}{2}} (2x-5) - \int \dots x^{\frac{3}{2}} dx$ (applies integration by parts correctly to typically M1: achieve this form – the (2x-5) may also be split up as well – send to review if unsure how to mark) This may also be done the other way round e.g. $\int x^{\frac{1}{2}} (2x-5) dx = \dots x^{\frac{1}{2}} (x^2-5x) - \int \dots x^{\frac{3}{2}} \pm \dots x^{\frac{1}{2}} dx$ The $\frac{1}{2}$ does not need to be considered for this mark. A1: A correct intermediate stage applying integration by parts with correct coefficients. e.g. $\left(\frac{x^2(2x-5)}{3} dx = \frac{2}{3}x^{\frac{3}{2}} \left(\frac{2x-5}{3}\right) - \int \frac{4}{9}x^{\frac{3}{2}} dx$ (or unsimplified equivalent). Coefficients must be exact. (See main scheme notes above) The other way round this could appear as e.g. $\int \frac{x^{\overline{2}}(2x-5)}{3} dx = \frac{1}{3}x^{\frac{1}{2}}(x^2-5x) - \frac{1}{6}\int x^{\frac{3}{2}} - 5x^{\frac{1}{2}} dx$. Condone a missing dx. May be implied. Increases the power by one on an x^n term where *n* is a fraction e.g. $\int \dots x^{\frac{3}{2}} dx \to \dots x^{\frac{5}{2}}$ The index dM1: does not need to be processed. It is dependent on the previous method mark. $\frac{4}{15}x^{\frac{3}{2}} - \frac{10}{9}x^{\frac{3}{2}} + c$ or exact simplified equivalent. (See main scheme notes above) A1: Alternative method using the substitution method e.g. let $u = x^{\frac{1}{2}} \Rightarrow \int ...u^4 + ...u^2 du$ (uses a substitution to express the integral in terms of another M1: variable. Allow slips with the coefficients, but the indices should be correct for their substitution) The $\frac{1}{2}$ does not need to be considered for this mark. e.g. $\int \frac{4u^4}{3} - \frac{10u^2}{3} du$ or unsimplified equivalent. Coefficients must be exact. See main scheme A1: notes above). May be implied by further work. Condone a missing dx. $\int ...u^4 + ...u^2 du \rightarrow ...u^5 + ...u^3$ (increases the power by one on at least one of their indices – does not dM1: need to be processed. It is dependent on the previous method mark. $\frac{4}{15}x^{\frac{5}{2}} - \frac{10}{9}x^{\frac{3}{2}} + c$ or exact simplified equivalent. (See main scheme notes above) A1: There may be alternative substitutions, but the same marking principles apply.

Question	Scheme	Marks	AOs
6(a)	$2(3)^3 - 9(3)^2 + 5(3) + k = 0 \Longrightarrow k = \dots$	M1	1.1b
	$54-81+15+k=0 \Longrightarrow k=12*$ or $-12+k=0 \Longrightarrow k=12*$	A1*	1.1b
		(2)	
	(a) Alternative by verification:		
	$2(3)^3 - 9(3)^2 + 5(3) + 12 = 0$	M1	1.1b
	54 - 81 + 15 + 12 = 0 Hence $k = 12 *$	A1*	1.1b
		(2)	
(b)	$\int (2x^3 - 9x^2 + 5x + 12) dx \dots x^4 \pm \dots x^3 \pm \dots x^2 \pm \dots x \pm \dots$	M1	3.1a
	$\frac{1}{2}(3)^4 - 3(3)^3 + \frac{5}{2}(3)^2 + 12(3) + c = -10 \Longrightarrow c = \dots$	dM1	1.1b
	(0, -28)	A1	2.2a
		(3)	
			(5 marks)
(a)	Notes Mark (a) and (b) together		
May b A1*: Obta see e.g or 2× But Note that s substituted Alternativ	$2(3)^{3} - 9(3)^{2} + 5(3) + k = 0 \Rightarrow k =$ be implied by e.g. $54 - 81 + 15 + k = 0 \Rightarrow k =$ with at least 2 correctled ins $k = 12$ with no errors seen and sufficient working shown. As a minim $(x, 2(3)^{3} - 9(3)^{2} + 5(3) + k = 0 \Rightarrow -12 + k = 0 \Rightarrow k = 12$ or $54 - 81 - 427 - 9 \times 9 + 5(3) + k = 0 \Rightarrow k = 12$ $2(3)^{3} - 9(3)^{2} + 5(3) + k = 0 \Rightarrow k = 12$ scores M1A0 for lack of working some are just writing the expression for $\frac{dy}{dx}$, then write "sub in $x = 3$ " but is and then go on to write $-12 + k = 0$ leading to $k = 12$ scores M0A0*. We: intutes $x = 3$ and $k = 12$ into the given derivative and attempts to evaluate	4 + 15 + k = 0	and need to k = 12
A1*: Corre As a 1 (b)	ect work to obtain an answer of 0 with a (minimal) conclusion e.g., tick, h minimum you would need to see e.g., $2(3)^3 - 9(3)^2 + 5(3) + 12 = 54 -$ mpts to integrate. Evidence can be taken for integrating to obtain at least 2	81+15+1	
	$2x^3 \rightarrow \dots x^4$ or $-9x^2 \rightarrow \dots x^3$ or $5x \rightarrow \dots x^2$ or $12 \rightarrow \dots x$ where \dots	are constan	
to ± If th equa A1: (0, -	stitutes $x = 3$ into their integrated expression that includes a constant of in 10 and proceeds to find their constant. Depends on the previous mark. e substitution is not shown this mark may be implied by their value for <i>c</i> of ation e.g., $18 + c = \pm 10$ 28) Condone -28 or $y = -28$ but not just $c = -28$. There must be no other one (-28, 0) following $y = -28$	or by their er values or	-
	Beware of circular arguments which avoid doing part (a) experimental formula (a) and the given derivative to give y in terms of x, y (a) $(3, -10)$ is substituted to give $3k + c = 8$ Part (b) is then done first using $k = 12$ to find $c = -28$		

This is then substituted into 3k + c = 8 to give k = 12This scores (a) M0A0 (b) M1dM1A1 (if -28 is identified as the intercept)

Alternative for part (a) using algebraic division:

$$\frac{2x^{2}-3x - 4}{x-3)2x^{3}-9x^{2}+5x+k}$$

$$\frac{2x^{3}-6x^{2}}{-3x^{2}+5x}$$

$$\frac{-3x^{2}+9x}{-4x+k}$$

$$\frac{-4x+12}{k-12} \text{ (or 0)}$$

leading to k-12=0 and then k=12.

M1: Attempts to divide the given cubic by (x-3) and proceeds as far as a remainder set = 0. Requires at least $2x^2 \pm 3x$.

A1*: Obtains k = 12 with no errors seen and sufficient working. Their algebraic division needs to be correct but allow them to have either k - 12 or 0 as their "remainder". If their remainder is given in their working as 0 they may proceed directly to k = 12.